设函数(1)求函数的零点;(2)在坐标系中画出函数的图象;(3)讨论方程解的情况.
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点. (1)求证:PB⊥DM; (2)求CD与平面ADMN所成角的正弦值.
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF//平面PCD;(2)平面BEF⊥平面PAD
已知椭圆G:+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点. (1)求椭圆G的焦点坐标和离心率; (2)将|AB|表示为m的函数,并求|AB|的最大值.
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。 (1)求动点的轨迹方程; (2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使(O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由
已知圆以为圆心且经过原点O. (1)若,写出圆的方程; (2)在(1)的条件下,已知点的坐标为,设分别是直线和圆上的动点,求的最小值及此时点的坐标.