(本小题共l5分) 如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(I)求证:CD=C1D:(II)求二面角A-A1D-B的平面角的余弦值; (Ⅲ)求点C到平面B1DP的距离.
(本小题满分l2分)已知{an}的前n项和(其中),且Sn的最大值为9。(1)确定常数k的值,并求数列{an}的通项公式;(2)求数列的前n项和。
(本小题满分12分)已知函数在区间[2,3]上有最大值4和最小值1.设.(1)求a、b的值;(2)若不等式上有解,求实数k的取值范围。
已知函数(Ⅰ)当时,求使成立的的值;(Ⅱ)当,求函数在上的最大值;(Ⅲ)对于给定的正数,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.
设向量,其中为实数.(Ⅰ)若,且求的取值范围;(Ⅱ)若求的取值范围.
已知数列的前项和满足.(Ⅰ)求数列的通项公式;(Ⅱ)设,且数列为等比数列.①求的值; ②若,求数列的前和.