(本小题满分12分)如图,已知平面,平面,为等边三角形,,为中点. (1)求证:平面;(2)求证:平面平面;(3)求直线与平面所成角的正弦值.
已知数列中,,(n∈N*),(1)试证数列是等比数列,并求数列{}的通项公式; (2)在数列{}中,求出所有连续三项成等差数列的项; (3)在数列{}中,是否存在满足条件1<r<s的正整数r ,s ,使得b1,br,bs成等差数列?若存在,确定正整数r,s之间的关系;若不存在,说明理由.
已知函数(). (1)讨论函数的单调性; (2)若关于的方程有唯一解,求的值.
已知等差数列中,,其前10项和为65 (1)求数列的通项公式; (2)求数列的前n项和.
已知函数,为常数,,且是方程的解 (1)求的值; (2)当时,求函数的值域.
(选修4—5:不等式选讲)设函数。 (1)当a=-5时,求函数的定义域。 (2)若函数的定义域为R,求实数a的取值范围。