(本小题满分12分)已知为坐标原点,向量,点满足. (1)记函数,求函数的最小正周期;(2)若、、三点共线,求的值.
(本小题满分10分) 已知:如图,四边形ABCD内接于,,过点的切线交的延长线于点. 求证:。
(本小题满分8分) 某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。现从甲、乙两组中各抽取2名工人进行技术考核。 (1)求:抽出4人中恰有2名女工人的方法种数; (2)求:从甲组抽取的工人中恰有1名女工人的概率;
(本小题满分12分)已知椭圆的两焦点为,离心率。 (1)求此椭圆的方程; (2)设直线,若与此椭圆相交于P、Q两点,且等于椭圆的短轴长,求m的值.
已知数列满足递推式,其中 (Ⅰ)求; (Ⅱ)并求数列的通项公式; (Ⅲ)已知数列有求数列的前n项和。
(本小题满分12分)在某次足球比赛中,甲、乙、丙三队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为. (Ⅰ)求甲获得小组第一且丙获得小组第二的概率; (Ⅱ)求三队得分相同的概率; (Ⅲ)求甲不是小组第一的概率.