已知椭圆的焦点在轴上,短轴长为4,离心率为. (1)求椭圆的标准方程; (2)若直线过该椭圆的左焦点,交椭圆于M、N两点,且,求直线的方程.
已知△ABC中,各点的坐标分别为,求:(1)BC边上的中线AD的长度和方程;(2)△ABC的面积.
已知对一切恒成立,求实数的取值范围.
已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1)、f(4)、f(8)的值;(2)若有f(x)+f(x-2)≤3成立,求x的取值范围.
已知函数.(1)确定的值,使为奇函数;(2)当为奇函数时,求的值域。
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?