已知等差数列的前项和为,(1)求数列的通项公式与前项和;(2)设求证:数列中任意不同的三项都不可能成为等比数列.
若关于的方程有实根,求的取值范围。 变题1:设有两个命题:①关于的方程有解;②函数是减函数。当①与②至少有一个真命题时,实数的取值范围是__ 变题2:方程的两根均大于1,则实数a的取值范围是_____。
要使函数在上恒成立。求的取值范围。 变题:设,如果当时有意义,求a的取值范围。
,其中
已知函数f(x)是(xR)的反函数,函数g(x)的图象与函数的图象关于直线x=-2成轴对称图形,设F(x)=f(x)+g(x). (1)求函数F(x)的解析式及定义域; (2)试问在函数F(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直?若存在,求出A,B坐标;若不存在,说明理由.