(本小题满分13分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
已知向量=(cosx,﹣),=(sinx,cos2x),x∈R,设函数f(x)=. (Ⅰ)求f(x)的最小正周期. (Ⅱ)求f(x)在[0,]上的最大值和最小值.
已知函数f(x)=x2﹣(a+2)x+alnx(a为实常数). (Ⅰ)若a=﹣2,求曲线 y=f(x)在x=1处的切线方程; (Ⅱ)讨论函数f(x)在[1,e]上的单调性; (Ⅲ)若存在x∈[1,e],使得f(x)≤0成立,求实数a的取值范围.
设数列{an}的前n项和为Sn,且Sn=4an﹣p,其中p是不为零的常数. (1)证明:数列{an}是等比数列; (2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.
已知函数f(x)=sin(2x﹣)+2cos2x﹣1(x∈R) (1)求f(x)的单调递增区间; (2)在△ABC中,三内角A,B,C的对边分别为b、a、c,若f(A)=,且•=9,b,a,c成等差数列,求角A及a的值.
已知等比数列{an}的各项均为正数,且2a1,成等差数列,a2,,a6成等比数列. (1)求数列{an}的通项公式; (2)设bn=log3,记Sn=,求Sn.