f(x)=x2+x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)令bn=,求数列{bn}的前n项和Tn
质点A位于数轴x=0处,质点B位于x=2处.这两个质点每隔1秒钟都向左或 向右平移一个单位,设向左移动的概率为,向右移动的概率为. (I)求3秒后,质点A在点x=1处的概率; (II)求2秒后,质点A、B同时在x=2处的概率.
已知函数y=sinωx•cosωx(ω>0) (ω>0)的周期为, (I) 求ω 的值; (II) 当0≤x≤时,求函数的最大值和最小值及相应的x的值.
解下列不等式: (1)-x2+2x->0;(2)9x2-6x+1≥0.
设数列的前项和为,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20. (1)求数列的通项公式; (2)若(=1,2,3),为数列的前项和.求.
如图,已知 的两条对角线AC与BC的交点为,是任意一点,求证:.