已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为;(1)求椭圆的离心率;(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.
某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示). (1)根据图象,求一次函数的表达式; (2)设公司获得的毛利润(毛利润=销售总价—成本总价)为元. 试用销售单价表示毛利润并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
设向量满足 (1)求的值; (2)求与夹角的正弦值.
已知 (1)求的值; (2)求的值; (3)若是第三象限角,求的值.
设为平面内的四点,且 (1)若求点的坐标; (2)设向量若与平行,求实数的值.
已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于. (1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线; (2)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合), 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.