已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为;(1)求椭圆的离心率;(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.
某蔬菜基地种植甲、乙两种无公害蔬菜,生产一吨甲种蔬菜需用电力9千瓦时,耗肥4吨;生产一吨乙种蔬菜需用电力5千瓦时,耗肥5吨。现该基地仅有电力390千瓦时,肥240吨。已知生产一吨甲种蔬菜获利700元,生产一吨乙种蔬菜获利500元,在上述电力、肥的限制下,问如何安排甲、乙两种蔬菜种植,才能使利润最大?最大利润是多少?
在中,a、b、c分别是角A、B、C的对边,且为最大边,. (1)求的值; (2)若,求边长.
已知等比数列前项之和为,,,求和
(本小题满分12分) 有一个容量为50的样本,数据的 分组及各组的频数如下 3;8; 9; 11; 10; 5; 4. (1)列频率分布表 (2)画出频率分布直方图 (3)根据频率分布直方图估计数据落在的概率是多少
(本小题满分12分) 假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间 ,求你离家前不能看到报纸(称事件A)的概率是多少?