某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构若甲、乙、丙、丁4名参加保险人员所在地区附近有A,B,C三家社区医院,并且他们的选择是相互独立的(Ⅰ)求甲、乙两人都选择A社区医院的概率;(Ⅱ)求甲、乙两人不选择同一家社区医院的概率;(Ⅲ)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.
已知函数. (I)将写成的形式,并求其图象对称中心的横坐标; (II)如果△ABC的三边a、b、c满足b2= a c,且边b所对的角为,试求的范围及此时函数的值域.
如图,四棱锥P-ABCD的底面是矩形,侧面PAD 是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点. (I)试判断直线PB与平面EAC的关系 (文科不必证明,理科必须证明); (II)求证:AE⊥平面PCD; (III)若AD=AB,试求二面角A-PC-D 的正切值.
(本小题满分12分)已知数列满足,(,), 若数列是等比数列.(1)求数列的通项公式;(2)求证:当为奇数时,;(3)求证:().
已知函数,其中为大于零的常数.(1)若函数在上单调递增,求的取值范围;(2)求函数在区间上的最小值;(3)求证:对于任意的且时,都有成立.
已知,将的图象向左平移个单位后所得的图象关于对称.(1)求实数,并求出取得最大值时的集合;(2)求的最小正周期,并求在上的值域.