(本小题满分10分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的(1)写出为负数的概率;(2)求一次函数的图象经过二、三、四象限的概率.(用树状图或列表法求解)
如图,在平行四边形ABCD中,E、F分别是CD,AB上的点,且DE=BF,求证:(1)CE=AF;(2)四边形AFCE是平行四边形.
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.
如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.
阅读所给的材料,然后解答问题:如图①,在“格点”直角坐标系上我们可以发现:求线段DE的长度,可以转化为求Rt△DEF的斜边长,例如:在坐标系中我们发现:D(-7,5),E(4,-3),所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以据勾股定理可得:DE=. (1)在图①中用上面的方法可求出线段AB的长为 ; (2)在图②中:设A(x1.y1),B(x2,y2),试用x1,x2,y1,y2表示:AC= ,BC= ,AB= ; (3)已知A(2,1),B(4,3),试用(2)中得出的结论求线段AB的长; (4)已知A(2,1),B(4,3),若点C为y轴上的点且使得△ABC是以AB为底边的等腰三角形,试求出点C的坐标.
某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题: (1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ; (2)求本次你调查获取的样本数据的平均数、众数和中位数; (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.