为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
(本题满分10分)设函数,(Ⅰ)不等式的解集为,求的值;(Ⅱ)在(Ⅰ)的条件下,试求不等式的解集.
(本小题满分14分)已知函数(Ⅰ)若,求的单调区间及的最小值;(Ⅱ)若,求的单调区间;(Ⅲ)证明:
本小题满分12分)在下表中,每行上的数从左到右都成等比数列,并且所有公比都等于,每列上的数从上到下都成等差数列,正数表示位于第行第列的数,其中
(Ⅰ)求的值;(Ⅱ)求的计算公式;(Ⅲ)设数列满足的前项和为,试比较与的大小,并说明理由。
(本小题满分12分)设函数(Ⅰ)若且对任意实数均有成立,求表达式;(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围;(Ⅲ)设,且为偶函数,求证
(本小题满分12分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)这名学生在上学路上因遇到红灯停 留的总时间的分布列及期望