(本小题满分13分)已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,D是AB的中点.(1)求动点D的轨迹C的方程;(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,①当|PQ|=3时,求直线l的方程;②设点E(m,0)是x轴上一点,求当·恒为定值时E点的坐标及定值.
.(本小题满分14分)电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,其中广告时间为1min,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间(此时间不包含广告).如果你是电视台的制片人,电视台每周播映两套连续剧各多少次,才能获得最高的收视率?
(本小题满分12分)已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(),求数列的前n项和.
(本小题满分12分) 在△ABC中,已知B=45°,D是BC边上的一点,AD="10," AC=14,DC=6,求AB的长.
(本题满分12分)已知是直线上三点,向量满足:,且函数定义域内可导。(1)求函数的解析式;(2)若,证明:;(3)若不等式对及都恒成立,求实数的取值范围。
(本题满分12分)在平面直角坐标系中,的两个顶点的坐标分别为,平面内两点同时满足一下条件:①;②;③(1)求的顶点的轨迹方程;(2)过点的直线与(1)中的轨迹交于两点,求的取值范围。