已知斜率为1的直线 过椭圆的右焦点,交椭圆于两点,求长
已知集合M{h(x)|h(x)的定义域为R,且对任意x都有h(﹣x)=﹣h(x)}设函数f(x)=(a,b为常数).(1)当a=b=1时,判断是否有f(x)∈M,说明理由;(2)若函数f(x)∈M,且对任意的x都有f(x)<sinθ成立,求θ的取值范围.
若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)是“可拆函数”.(1)函数f(x)=是否是“可拆函数”?请说明理由;(2)若函数f(x)=2x+b+2x是“可拆函数”,求实数b的取值范围:(3)证明:f(x)=cosx是“可拆函数”.
如图,半径为4m的水轮绕着圆心O逆时针做匀速圆周运动,每分钟转动4圈,水轮圆心O距离水面2m,如果当水轮上点P从离开水面的时刻(P0)开始计算时间.(1)将点P距离水面的高度y(m)与时间t(s)满足的函数关系;(2)求点P第一次到达最高点需要的时间.
李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?
在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求sinx+cosx的值.