如图,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去营救.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑到C点,再跳入海中;3号救生员沿岸边向前跑300米到离B点最近的D点,再跳入海中。救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒。若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达营救地点B。(参考数据,)
已知二次函数y =" x2" -4x +3.(1)用配方法将y =" x2" -4x +3化成y =" a(x" -h) 2 + k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)根据图象回答:当自变量x的取值范围满足什么条件时,y<0?
在如图所示的平面直角坐标系中,△OAB的三个顶点坐标分别为O(0,0),A(1,-3),B(3,-2).(1)将△OAB绕原点O逆时针旋转90°,画出旋转后的△OA’ B’;(2)求出点B到点B’ 所走过的路径的长.
已知二次函数y =" ax2" +bx +c中,函数y与自变量x的部分对应值如下表:
(1)求这个二次函数的解析式;(2)写出这个二次函数的顶点坐标
计算:
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;