如图,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去营救.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑到C点,再跳入海中;3号救生员沿岸边向前跑300米到离B点最近的D点,再跳入海中。救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒。若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达营救地点B。(参考数据,)
如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE. 求证:(1)△ABC≌△DEF; (2)GF=GC.
解方程:
(5分))先化简、再求值:,其中a=-3.
已知:如图,△ABC中,DE∥BC,AD+EC = 9,DB = 4,AE = 5,求AD的长.
(1)在方格纸中,画出将三角形绕原点O逆时针旋转90°后得到的图形; (2)在方格纸中,将原三角形以点O为位似中心放大,使它们的位似比为1:2,画出放大后三角形.