已知圆C过点(4,-1),且与直线相切于点.(Ⅰ)求圆C的方程;(II)是否存在斜率为1的直线l,使得l被圆C截得弦AB,以AB为直径的圆经过原点,若存在,求出直线的方程;若不存在,请说明理由.
已知椭圆的离心率为,且过点. (1)求椭圆方程; (2)设不过原点的直线,与该椭圆交于两点,直线的斜率依次为,满足,试问:当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
已知等差数列的前项和为,. (1)求数列的通项公式; (2)求数列的前项和为
如图,在四棱锥中,,,,平面底面,,和分别是和的中点,求证: (1)底面; (2)平面.
已知向量,且函数在时取得最小值. (Ⅰ)求的值; (Ⅱ)在中,分别是内角的对边,若,,,求的值.
选修4-1:几何证明选讲 已知外接圆劣弧上的点(不与点、重合),延长至, 延长交的延长线于. (1)求证:; (2)求证:.