(满分11分)如图11,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于F,连结CF.(1)求证:AF=CD;(2)若AB=AC,∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;(3)在(2)的条件下,求sin∠ABF的值.
阅读材料: 关于三角函数还有如下的公式: 利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例: = = = = == 根据以上阅读材料,请选择适当的公式解答下面问题 (1)计算:sin15°; (2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据)
在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交与点D,E,且∠CBD=∠A. (1)判断直线BD与⊙O的位置关系,并证明你的结论. (2)若AD:AO=6:5,BC=3,求BD的长.
为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:
根据调查结果绘制了两幅不完整的统计图. 请你根据以上信息解答下列问题: (1)本次调查活动采取了 调查方式. (2)计算本次调查的学生人数和图(2)选项C的圆心角度数. (3)请根据图(1)中选项B的部分补充完整. (4)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
(1) (2)先化简,再求值:,其中.
在四边形ABCD中,AD∥BC,AD=CD,点E在DC的延长线上,AE交BC边于点F,且AE=AB. (1)如图l,求证:∠B=∠E: (2)如图2,在(1)的条件下,在BC上取一点M,使BM=CE,连接AM,过M作MH⊥AE于H,连接CH,若∠BAE=∠EHC=60°,CF=2,求线段AH的长.