(本小题满分12分)已知半圆x2+y2=3(y≥0),P为半圆上任一点,A(2,0)为定点,以PA为边作正三角形PAB,且点B与圆心分别在PA的两侧,求四边形POAB面积的最大值.
已知m=,n=,f(x)=m·n,且f=.(1)求A的值;(2)设α,β∈,f(3α+π)=,f=-,求cos (α+β)的值.
已知函数f(x)=sin ωx·cos ωx+cos 2ωx-(ω>0),其最小正周期为.(1)求f(x)的解析式.(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.
在△ABC中,角A,B,C的对边分别为a,b,c,已知角A=, sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.
已知函数f(x)=sin ωx-sin2+(ω>0)的最小正周期为π.(1)求ω的值及函数f(x)的单调递增区间;(2)当x∈时,求函数f(x)的取值范围.
由于某高中建设了新校区,为了交通方便要用三辆通勤车从新校区把教师接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.