如图1,等腰Rt△CEF的斜边CE在正方形ABCD的边BC的延长线上,CF>BC,取线段AE的中点M 。(1)求证:MD=MF,MD⊥MF(6分)(2)若Rt△CEF绕点C顺时针旋转任意角度(如图2),其他条件不变。(1)中的结论是否仍然成立,若成立,请证明,若不成立,请说明理由。
小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米(注意:根据光的反射定律:反射角等于入射角).
(本题满分l0分)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出四个不同类型的正确结论;① _____________;②__________;③__________;④______.(2)若BC=8,ED=2,求⊙O的半径.
如图,已知△ADE和△ABC是位似图形,∠A=30°,DE垂直平分AC,且DE=2.(1)求∠C的度数. (2)求BC的长度.
请判断关于的一元二次方程的根的情况,并说明理由.如果方程有根,请写出方程的根;如果没有根,请通过只改变常数项的值,写出一个有实数根的一元二次方程.
在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球,求“两次取的小球的标号相同”的概率,请借助列表法或树形图说明理由.