已知:函数的最大值为,最小正周期为.(Ⅰ)求:的解析式;(Ⅱ)若的三条边为,,,满足,边所对的角为.求:角的取值范围及函数的值域.
(本小题满分12分) 在直角坐标系中中,曲线C1的参数方程为(t为参数);在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为,曲线C1与C2交于A、B两点,求|AB|.
(本小题满分10分) 已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于交圆于点,. (1)求证:平分; (2)求的长.
(本小题满分14分) 在平面直角坐标系中,已知向量(),,动点的轨迹为. (1)求轨迹的方程,并说明该方程表示的曲线的形状; (2)当时,过点(0,1),作轨迹T的两条互相垂直的弦、,设、的中点分别为、,试判断直线是否过定点?并说明理由.
(本小题满分14分)设数列的前项和为,点在直线上,为常数,. (1)求; (2)若数列的公比,数列满足,求证:为等差数列,并求; (3)设数列满足,为数列的前项和,且存在实数满足,,求的最大值.
(本小题满分14分)如图1,在正三角形ABC中,AB=3,E、F、P分别是AB、AC、BC边上的点,AE=CF=CP=1. 将沿EF折起到的位置,使平面与平面BCFE垂直,连结A1B、A1P(如图2). (1)求证:PF//平面A1EB; (2)求证:平面平面A1EB; (3)求四棱锥A1—BPFE的体积.