(本题4分)把下列各数填在相应的大括号里:,,0.86,,,0, 负整数集合:( …);负分数集合:( …);正分数集合:( …);非负有理数集合( …)。
如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC约为多少米?( sin42°≈0.7,tan42°≈0.9)
已知关于的一元二次方程 有两个不相等的实数根.(1)求的取值范围;(2)若为正整数,求该方程的根.
先化简:,再选取一个合适的a值代入计算.
(1)计算:+﹣sin45°(2)化简:
(14’)如图,在平面直角坐标系中,A、B为轴上两点,C、D为轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求的值.