(理)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用表示取球终止所需要的取球次数.(I)求袋中所有的白球的个数;(II)求随机变量的概率分布;(III)求甲取到白球的概率.
F1、F2是的两个焦点,M是双曲线上一点,且,求三角形△F1MF2的面积.
已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值. (本题12分)
在的展开式中,求:(1)第5项的二项式系数;(2)第5项的系数;(3)倒数第3项;(4)含的项。 (本题12分)
如图所示,是等腰直角三角形,是 所在平面外一点,(1)求证:面面;(2)求和所在平面所成角。(本题12分)