供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后乙开抢修车载着所需材料出发.(1). 若 (小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;(2). 若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到,则t的最大值是多少?
求x的值与计算 (1)4x2=81 (2)
如图,在直角坐标系中,已知P(-2,-1),点T(t,0)是x轴上的一个动点. (1)求点P关于原点的对称点M的坐标. (2)已知点N(0,2)为y轴上的一点,求经过P、M、N三点的抛物线的解析式,并求出该抛物线的顶点坐标. (3)点T在运动过程中,是否存在某个时刻使△MTO为等腰三角形?若存在,求出点T的坐标.若不存在,请说明理由.
在平行四边形ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF、BF. (1)求证:四边形BFDE是矩形. (2)若CF=3,BF=4,DF=5,求证:△ADF是等腰三角形.
“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图所示,CD为⊙O的直径,CD⊥AB,垂足为E,CE=1寸,AB=1尺,求直径CD长是多少寸?”(注:1尺=10寸)
某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x. (1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式; (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?