如图,Rt△ABC中,∠C=90°,∠A=60°,AC=2.按以下步骤作图:①以A为圆心,以小于AC长为半径画弧,分别交AC、AB于点E、D;②分别以D、E为圆心,以大于DE长为半径画弧,两弧相交于点P;③连结AP交BC于点F.那么:(1)AB的长等于__________(直接填写答案);(2)∠CAF =_________°(直接填写答案).
“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现万州人追梦的风采,我区某校开展了以“梦想中国,逐梦万州”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:
请根据上表提供的信息,解答下列问题: (1)表中的x的值为 ,y的值为 。 (2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率。
先化简,再求值:,其中x满足方程:x2+x﹣6=0。
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△. (1)画出△,直接写出点,的坐标; (2)在旋转过程中,点B经过的路径的长; (3)求在旋转过程中,线段AB所扫过的面积.
如图,抛物线的图象过点C(0,1),顶点为Q(2,3)点D在x轴正半轴上,且线段OD=OC (1)求直线CD的解析式; (2)求抛物线的解析式; (3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO; (4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。
在Rt△ABC中,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上, 且DM⊥DN,作MF⊥AB于点F,NE⊥AB于点E。 (1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF; (2)拓展探究:若AC≠BC。 ①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明; ②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明。