如图,Rt△ABC中,∠C=90°,∠A=60°,AC=2.按以下步骤作图:①以A为圆心,以小于AC长为半径画弧,分别交AC、AB于点E、D;②分别以D、E为圆心,以大于DE长为半径画弧,两弧相交于点P;③连结AP交BC于点F.那么:(1)AB的长等于__________(直接填写答案);(2)∠CAF =_________°(直接填写答案).
如图1所示:等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1交AB的延长线于B1. (1)请你探究:,是否都成立? (2)请你继续探究:若△ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断. (3)如图2所示Rt△ABC中,∠ACB=90︒,AC=8,AB=,E为AB上一点且AE=5,CE交其内角角平分线AD于F.试求的值.
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2. (1)当t= _________ s时,点P与点Q重合; (2)当t= _________ s时,点D在QF上; (3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.
如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O. (1)求边AB的长; (2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G. ①判断△AEF是哪一种特殊三角形,并说明理由; ②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
已知:如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于E点,交DF于M,F是BC延长线上一点,且CE=CF. (1)求证:BM⊥DF; (2)若正方形ABCD的边长为2,求ME•MB.
如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G. (1)求证:AF⊥BE; (2)试探究线段AO、BO、GO的长度之间的数量关系; (3)若GO:CF=4:5,试确定E点的位置.