(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)(Ⅰ)将日利润(元)表示成日产量(件)的函数;(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值
(本小题12分) 解关于x的不等式log2(2x-1)·log(2x+1-2)<2。
4个男生,3个女生站成一排。 (1)3个女生两两相邻,有多少种不同的站法。 (2)3个女生两两不相邻,有多少种不同的站法。 (3)男生甲不站排头,女生乙不站排尾有多少种不同的站法。
(本小题满分10分) 在△ABC中,确A、B、C的对边分别为a、b、c,且a=,b2+c2-bc=3。 (Ⅰ)求角A; (Ⅱ)设cosB=,求边c的大小。
(本小题满分12) 已知直线kx-y+1=0与双曲线=1相交于两个不同的点A、B。 (Ⅰ)求k的取值范围; (Ⅱ)若x轴上的点M(3,0)到A、B两点的距离相等,求k的值。
(本小题满分12分) 已知函数f(x)=ax3+bx2+cx+d在(-,1)上单调递减,在(1,3)上单调递增,在(3,+)上单调递减、且函数图象在(2,f(2))处的切线与直线5x+y=0垂直。 (Ⅰ)求实数a、b、c的值; (Ⅱ)设方程f(x)=0有三个不相等的实数根,求d的取值范围。