(本小题满分12分)已知函数f(x)=ax3+bx2+cx+d在(-,1)上单调递减,在(1,3)上单调递增,在(3,+)上单调递减、且函数图象在(2,f(2))处的切线与直线5x+y=0垂直。(Ⅰ)求实数a、b、c的值;(Ⅱ)设方程f(x)=0有三个不相等的实数根,求d的取值范围。
数列中,,,(1)若数列为公差为11的等差数列,求(2)若数列为以为首项的等比数列,求数列的前m项和
在中,角、、的对边分别为、、,,解此三角形.
已知、分别为椭圆:的上、下焦点,其中也是抛物线: 的焦点,点是与在第二象限的交点,且。(Ⅰ)求椭圆的方程;(Ⅱ)已知点(1,3)和圆:,过点的动直线与圆相交于不同的两点,在线段取一点,满足:,(且)。求证:点总在某定直线上。
已知函数()是定义在上的奇函数,且时,函数取极值1.(Ⅰ)求函数的解析式;(Ⅱ)令,若(),不等式恒成立,求实数的取值范围;
已知数列的前n项和为,,且,数列满足,数列的前n项和为(其中).(Ⅰ)求和;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围