已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且(1)求圆和抛物线C的方程;(2)若为抛物线C上的动点,求的最小值;(3)过上的动点Q向圆作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.(1)求函数的解析式;(2)若关于x的方程f(x)=k有三个根,求实数k的取值范围
已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。(精确到1万元)
设A={x︱x2+4x=0},B={x︱x2+2(a+1)x+ a2-1=0},若A∩B=B,求a的取值集合。
(本题满分15分) 已知(Ⅰ)当t=1时,求的单调区间(Ⅱ)设,求的最大值