解方程(组):(每小题6分,共12分)(1); (2)解方程组:
如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切; (2)如图2,当F是AB的四等分点且EF·EC=时,求EC的值.
如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.
已知关于x的方程 的两根是一个矩形两邻边的长.(1)k取何值时,方程在两个实数根;(2)当矩形的对角线长为时,求k的值.
如图,要利用一面墙(墙长为25米)建羊圈,用75米的围栏围成总面积为300平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?