某公司到果园购买某种优质水果,果园对购买3000千克以上(含3000千克)的有两种销售方式,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己运回,已知该公司租车从基地到公司的运输费用是5000元。(1)分别写出该公司两种购买方案的付款与所购买的水果量之间的函数关系式;(2)当购买量在什么范围时,选择哪种购买方式付款最少?
某学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1:3:6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖?
如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣12,16),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长;(2)求直线BD解析式;(3)若点N在直线BD上,在x轴上是否存在点M,使以M、N、E、D为顶点的四边形是平行四边形?若存在,请求出一个满足条件的点M的坐标;若不存在,请说明理由.
请阅读下列材料:问题:如图①,将菱形ABCD和菱形BEFG拼接在一起,使得点A,B,E在同一条直线上,点G在BC边上,P是线段DF的中点,连接PG,PC.若∠ABC=120°,试探究PG与PC的位置关系及∠PCG的大小.小明同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小明的思路,探究并解决下列问题:(1)直接写出上面问题中线段PG与PC的位置关系及∠PCG的大小;(2)将图①中的菱形BEFG绕点B顺时针旋转,使点E恰好落在CB的延长线上,原问题中的其他条件不变(如图②).你在(1)中得到的两个结论是否仍成立?写出你的猜想并加以证明.
如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣在第二象限内交于点B(﹣3,a).(1)求a和b的值;(2)过点B作直线l平行x轴交y轴于点C,求△ABC的面积.
如图,矩形ABCD中,对角线AC的垂直平分线交AD边于点E,交BC边于点F,分别连结AF和CE.(1)根据题意将图形补画完整(要求尺规作图,保留作图痕迹,不写作法);(2)试判断四边形AFCE的形状,并证明你的判断.