(本小题满分12分)已知数列{an},a1=1,an=λan-1+λ-2(n≥2).(1)当λ为何值时,数列{an}可以构成公差不为零的等差数列,并求其通项公式;(2)若λ=3,求数列{an}的通项公式an.
已知四棱锥的底面为菱形,且,,为的中点. (Ⅰ)求证:平面; (Ⅱ)求点到面的距离.
是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世卫组织设定的最宽限值,日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标. 某试点城市环保局从该市市区2011年全年每天的监测数据中随机抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶),若从这6天的数据中随机抽出2天. (Ⅰ)求恰有一天空气质量超标的概率; (Ⅱ)求至多有一天空气质量超标的概率.
已知正项等差数列的前项和为,且满足,. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足且,求数列的前项和.
已知均为正数,证明:,并确定为何值时,等号成立。
已知P为半圆C:(为参数,)上的点,点A的坐标为(1,0), O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为。 (Ⅰ)以O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标; (Ⅱ)求直线AM的参数方程。