已知向量,,设函数.(1)求的最小正周期与单调递增区间;(2)在△中,、、分别是角、、的对边,若△的面积为,求的值.
某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩为x,y,求满足“”的概率.
已知函数(1)求证:在上是增函数;(2)求的最大值和最小值.
(本小题12分)下表是关于某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:
(1)请在给出的坐标系中画出上表数据的散点图; (2)请根据散点图,判断y与x之间是否有较强线性相关性,若有求线性回归直线方程; (3)估计使用年限为10年时,维修费用为多少?(参考数值: ) (参考公式: ; ;)
(本小题12分)设各项均为正数的等比数列中,,.设(Ⅰ)求数列的通项公式;(Ⅱ)若,,求证:;
(本小题12分)函数在内只取到一个最大值和一个最小值,且当时,;当时,.(Ⅰ)求此函数的解析式;(Ⅱ)求此函数的单调递增区间.