设数列的前n项和为,满足,且.(Ⅰ)求的通项公式;(Ⅱ)若成等差数列,求证:成等差数列.
如图,在直三棱柱中,,,是的中点.(1)求证:∥平面;(2)求二面角的余弦值;(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
盒中装有个零件,其中个是使用过的,另外个未经使用.(1)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次抽到使用过的零件的概率;(2)从盒中随机抽取个零件,使用后放回盒中,求此时盒中使用过的零件个数为3或4概率.
已知函数,.(1)求方程=0的根; (2)求的最大值和最小值.
已知正项数列满足:(1)求的范围,使得恒成立;(2)若,证明:(3)若,证明:
已知函数,其中.(1)若是的极值点,求的值;(2)求的单调区间;(3)若在上的最大值是,求的取值范围.