某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评。结果如下表所示:规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分综合得分=演讲答辩得分×+民主测评得分×(0.5≤≤0.8)如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由。
如图,BD=CD,BF⊥AC于F,CE⊥AB于E。求证:点D在∠BAC的角平分线上。
如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD。
如图:AD=EB, BF=DG, BF∥DG,点A、B、C、D、E在同一直线上。求证: AF=EG。
如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.
(本题满分12分) 已知点C为线段AB上一点, 分别以AC、BC为边在线段AB同侧作△ACD和△BCE, 且CA=CD, CB=CE, ∠ACD=∠BCE, 直线AE与BD交于点F. (1)如图1,求证:△ACE≌△DCB。 (2)如图1, 若∠ACD=60°, 则∠AFB= ; 如图2, 若∠ACD=90°, 则∠AFB= ; (3)如图3, 若∠ACD=β, 则∠AFB= (用含β的式子表示) 并说明理由。