等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小亮拿着300角的透明三角板,使300角的顶点落在点P,三角板绕P点旋转. (1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP; (2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F. ①探究1:△BPE与△CFP还相似吗? ②探究2:连结EF,△BPE与△PFE是否相似?请说明理由; ③设EF=m,△EPF的面积为S,试用m的代数式表示S.
某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图: (1)此次调查抽取的学生人数m= 名,其中选择“书法”的学生占抽样人数的百分比n= ; (2)若该校有3000名学生,请根据以上数据估计该校对“书法”最感兴趣的学生人数.
如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)
如图,在平行四边形ABCD中,AB<BC. (1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹); (2)若BC=8,CD=5,则CE= .
(为方便答题,可在答题卡上画出你认为必要的图形) 在Rt△ABC中,∠A=90°,AC =" AB" = 4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P. (1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果) (2)如图2,当α=135°时,求证:BD1 = CE1 ,且BD1⊥ CE1 ; (3)求点P到AB所在直线的距离的最大值.(直接写出结果)
如图,已知△ABC.按如下步骤作图: ①以A为圆心,AB长为半径画弧; ②以C为圆心,CB长为半径画弧,两弧相交于点D; ③连结BD,与AC交于点E,连结AD,CD. (1)求证:△ABC≌△ADC; (2)若∠BAC = 30°,∠BCA = 45°,AC = 4,求BE的长.