(本小题8分)为贯彻落实云南省教育厅提出的“三生教育”,在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了名同学平均每周在家做家务的时间,统计并制作了如下的频数分布和扇形统计图:根据上述信息回答下列问题: , ; 在扇形统计图中,组所占圆心角的度数为 ; 全校共有名学生,估计该校平均每周做家务时间不少于小时的学生约有多少人?
已知关于x、y的方程组.(1)求这个方程组的解;(2)当m取何值时,这个方程组的解中,x大于1,y不小于-1.
为了加强人们的节水意识,合理利用水资源,某市采用价格调控手段达到目的。规定:每户居民每月用水不超过6吨时,按基本价格收费;超过6吨时,超过部分要加价收费。该市某户居民今年3、4月份的用水量和收费如下表所示,试求用水收费的两种价格。
如图,在直角梯形ABCD中,∠D =∠BCD = 90°,∠B = 60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①. ⑴ 求CD的长及∠1的度数;⑵ 设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?⑶ 当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,请直接写出对应的t的值;若不存在,请说明理由.
如图1,将底面为正方形的两个完全相同的长方体铁块放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至水面与长方体顶面平齐为止.水槽内的水深h(cm)与注水时间t(s)的函数关系如图2所示.根据图象完成下列问题:(1)一个长方体的体积是 cm3; (2)求图2中线段AB对应的函数关系式; (3)求注水速度v和圆柱形水槽的底面积S.
如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).⑴ 在如图⑵建立的坐标系下,求网球飞行路线的抛物线解析式.⑵ 若竖直摆放5个圆柱形桶时,则网球能落入桶内吗?说明理由;⑶若要使网球能落入桶内,求竖直摆放的圆柱形桶的个数.