(本小题6分)解方程组
已知,求的值.
已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果EF=2OG,求点G的坐标.(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.(1)利用图1,求证:PA=PB;(2)如图2,若点是与的交点,当时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,请借助图3补全图形,并求的长.
已知二次函数.(1)二次函数的顶点在轴上,求的值;(2)若二次函数与轴的两个交点A、B均为整数点(坐标为整数的点),当为整数时,求A、B两点的坐标.
现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.________思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、,请利用图2的正方形网格(每个小正方形的边长为)画出相应的△ABC,并求出它的面积是: .探索创新:(3)若△ABC三边的长分别为、、,请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为: .