(本题满分12分,第(1)、(2)题各6分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求直线AD和抛物线的解析式;(2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.
如图,抛物线y=-x2+bx+c与直线交于C、D两点,其中点C 在y轴上,点D的坐标为(3, ).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F,设点P的横坐标为m。(1)求抛物线的解析式;(2)当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若点P在CD上方,则四边形PCOD的面积最大时,求点P的坐标。
已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.
在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD。(1)如图1,直接写出∠ABD的大小(用含的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。
某校数学兴趣小组要测量天塔CD的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).
某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.