在中,角所对的边分别为,且满足.(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小.
(本小题共13分)在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数,当取最大值时,判断△ABC的形状.
(本小题共14分)对于,定义一个如下数阵:其中对任意的,,当能整除时,;当不能整除时,.设.(Ⅰ)当时,试写出数阵并计算;(Ⅱ)若表示不超过的最大整数,求证:;(Ⅲ)若,,求证:.
(本小题共13分)已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)试用表示△的面积,并求面积的最大值.
(本小题共13分)已知函数.(Ⅰ)求函数在区间上的最小值;(Ⅱ)证明:对任意,都有成立.
(本小题共13分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.(Ⅰ)求至少有1人面试合格的概率;(Ⅱ)求签约人数的分布列和数学期望