给出下面的数表序列:其中表n(n="1,2,3" )有n行,第1行的n个数是1,3,5,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和。(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12,记此数列为 求和:
(本小题满分12分)设的内角所对的边分别为,已知,. (Ⅰ)求角; (Ⅱ)若,求的面积.
【原创】设集合,从S的所有非空子集中,等可能地取出一个.(Ⅰ)设,若,则,就称子集A满足性质,求所取出的非空子集满足性质的概率;(Ⅱ)所取出的非空子集的最大元素为,求的分布列和数学期望.
如图,在空间直角坐标系O - xyz中,正四棱锥P - ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且.(1)求证:MN⊥AD;(2)求MN与平面PAD所成角的正弦值.
(选修4—5:不等式证明选讲)已知均为正数,证明:.
选修:坐标系与参数方程在极坐标系下,已知圆O:和直线,(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.