已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .(1)求数列{an}的通项公式;(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;(3)若cn=,证明:( n∈N﹡).
已知数列1,11,111,1111,,,,写出该数列的一个通项公式,并用反证法证明该数列中每一项都不是完全平方数.
已知函数,数列满足,.(1)求;(2)猜想数列的通项,并予以证明.
某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为,且知当利率为0.012时,存款量为1.44亿;又贷款的利率为时,银行吸收的存款能全部放贷出去;若设存款的利率为,,则当为多少时,银行可获得最大收益?
下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若,且,则.
设关于的方程,(1)若方程有实数根,求锐角和实数根;(2)证明:对任意,方程无纯虚数根.