经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.
设集合,.(1)当1时,求集合;(2)当时,求的取值范围.
已知函数,其中角的终边经过点,且.(1)求的值;(2)求在上的单调减区间.
如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线、与x轴围成一个等腰三角形,说明理由.
设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是,(1)求双曲线的方程;(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.
有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆有公共点的概率.