已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求的标准方程;(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
设的内角所对边的长分别是,且 (Ⅰ)求的值;(Ⅱ)求的值.
已知函数的一系列对应值如下表:
(1)根据表格提供的数据求函数的一个解析式; (2)根据(1)的结果,若函数周期为,当时, 方程恰有两个不同的解,求实数的取值范围.
设函数 (Ⅰ)求; (Ⅱ)若,且,求的值. (Ⅲ)画出函数在区间上的图像(完成列表并作图)。 (1)列表
(2)描点,连线
在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB. (1)求角B的大小; (2)若b=3,sinC=2sinA,求a,c的值.
等差数列的前项和记为,已知. (1)求通项; (2)若,求.