如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF于点C,DE⊥AF于 点E.BC=1.8m,BD=0.5m,∠A=45º,∠F=29º. (1)求滑道DF的长(精确到0.1m); (2)求踏梯AB底端A与滑道DF底端F的距离AF(精确到0.1m). (参考数据:sin29º≈0.48,cos29º≈0.87,tan29º≈0.55)
(本小题10分)平面直角坐标系中,点A在函数y1=(x>0)的图象上,点B在y2=-(x<0)的图象上,设A的横坐标为a,B的横坐标为b:(1)当|a|=|b|=5时,求△OAB的面积;(2)当AB∥x轴时,求△OAB的面积; (3)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求a·b的值.
(本小题10分)(1)将下列各式进行分解因式:① ; ② (2)先化简,再求值:(1-)÷(-2),其中;完成对分式的化简求值后,填空:要使该分式有意义,x的取值应满足 .
(本小题8分)正方形纸片ABCD的对称中心为O,翻折∠A使顶点A重合于对角线AC上一点P,EF是折痕:(1)证明:AE=AF;(2)尺规作图:在图中作出当点P是OC中点时的△EFP(不写画法,保留作图痕迹);完成作图后,标注所作△EFP的外接圆心M.
(本小题8分)某公园有一座雕塑D,在北门B的正南方向,BD为100米,小树林A在北门的南偏西60°方向,荷花池C在北门B的东南方向,已知A,D,C三点在同一条直线上且BD⊥AC:(1)分别求线段AB、BC、AC的长(结果中保留根号,下同);(2)若有一颗银杏树E恰好位于∠BAD的平分线与BD的交点,求BE的距离.
(本小题6分)求一元一次不等式组的整数解,将解得的整数分别写在相同的卡片上,背面朝上,随机抽取一张,不放回,再抽出一张,把先抽出的数字作为横坐标,后抽出的作为纵坐标,这样的点在平面直角坐标系内有若干个,请用列表或树状图等方法表示出来,并求出点在坐标轴上的概率.