(本小题6分)求一元一次不等式组的整数解,将解得的整数分别写在相同的卡片上,背面朝上,随机抽取一张,不放回,再抽出一张,把先抽出的数字作为横坐标,后抽出的作为纵坐标,这样的点在平面直角坐标系内有若干个,请用列表或树状图等方法表示出来,并求出点在坐标轴上的概率.
如图,已知二次函数的图象的顶点为A,且与y轴交于点C. (1)求点A与点C的坐标; (2)若将此函数的图象沿z轴向右平移1个单位,再沿y轴向下平移3个单位,请直接写出平移后图象所对应的函数关系式及点C的对应点的坐标; (3)若A(m,),B(m+1,)两点都在此函数的图象上,试比较与的大小.
某商场以每件280元的价格购进一批商品,当每件商品的售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.设每件商品的实际售价比原销售价降低了x元. (1)填表: (2)要使商场每月销售该商品的利润达到7200元,且更有利于减少库存,则该商品每件实际售价应定为多少元?
如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度. (参考数据:sin22°≈,cos22°≈,tan22°≈)
(1)已知,,则=; (2)已知,,,求的值.
(本题共8分,每小题4分) (1)、如下图,△ABC内接于⊙O,且AB=AC,⊙O的弦AE交于BC于D. 求证:AB·AC=AD·AE (2)、如下图,△ABC内接于⊙O,且AB=AC,当弦AE的延长线与BC的延长线相交于点D时,上述结论是否还成立?若成立,请给予证明。若不成立,请说明理由。