如图,一条直线与反比例函数y1=的图象交于A(1,5),B(5,n)两点,与x轴交于D点, AC⊥x轴,垂足为C.(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标.(2)如图乙,若点E在线段AD上运动,连结CE,作∠CEF=45°,EF交AC于F点.①试说明△CDE∽△EAF;②当△ECF为等腰三角形时,请求出F点的坐标.
(本题共两小题,每小题6分,满分12分)(1)计算:(2)解方程:
(本小题满分12分)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.
(10分)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出与之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
(本小题满分9分) 已知关于的方程有两个不相等的实数根、,问是否存在实数,使方程的两实数根互为相反数?如果存在,求出的值;如果不存在,请说明理由。
(本小题满分7分)如图,不透明圆锥体DEC放在水平面上,在A处灯光照射下形成影子。设BP过底面的圆心O,已知圆锥的高为m,底面半径为2m,BE=4m。求: (1) 求∠B的度数. (2)若∠ACP=2∠B,求光源A距水平面的高度。(结果保留根号)