(本小题满分14分)已知满足不等式,求函数()的最小值.
设是定义域在上的奇函数,且其图象上任意两点连线的斜率均小于零.(l)求证在上是减函数;(ll)如果,的定义域的交集为空集,求实数的取值范围;(lll)证明若,则,存在公共的定义域,并求这个公共的空义域.
已知函数f(x)=,其中(I)若b>2a,且 f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;(II)若对任意实数x,不等式恒成立,且存在成立,求c的值。
二次函数f(x)=(I)若方程f(x)=0无实数根,求证:b>0;(II)若方程f(x)=0有两实数根,且两实根是相邻的两个整数,求证:f(-a)=;(III)若方程f(x)=0有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k,使得.
已知函数和 的图象在处的切线互相平行.(Ⅰ) 求的值;(Ⅱ)设,当时,恒成立,求的取值范围.
斜率为2的直线l被双曲线=1截得的弦长为4,求直线l的方程.