斜率为2的直线l被双曲线=1截得的弦长为4,求直线l的方程.
在中,角A、B、C的对边分别为.已知.(1)若,求的面积;(2)设向量,,且,求的值.
(本小题满分10分)选修4—5:不等式选讲已知a+b=1,对,b∈(0,+∞),+≥|2x-1|-|x+1|恒成立,(Ⅰ)求+的最小值;(Ⅱ)求x的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程已知直线l经过点P(,1),倾斜角α=,圆C的极坐标方程为=cos(θ-).(Ⅰ)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.
(本小题满分10分)选修4—1:几何证明选讲如图,四边形ACED是圆内接四边形,AD、CE的延长线交于点B,且AD=DE,AB=2AC.(Ⅰ)求证:BE=2AD;(Ⅱ)当AC=2,BC=4时,求AD的长.
(本小题满分12分)已知函数f(x)=-bx+lnx(a,b∈R).(Ⅰ)若a=b=1,求f(x)点(1,f(1))处的切线方程;(Ⅱ)设a<0,求f(x)的单调区间;(Ⅲ)设a<0,且对任意的x>0,f(x)≤f(2),试比较ln(-a)与-2b的大小.