如图,一部起重机的机身AD高22m,吊杆AB长40m,吊杆与水平线的夹角∠BAC可从30°升到80°.分别求起重机起吊过程中的最大水平距离和起重机起吊的离地面最大高度(吊钩本身的长度和所挂重物的高度忽略不计)。(结果精确到0.1米,sin80°=0.9848,cos80°=0.1736,
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:=AB·AD;(2)若AD=4,AB=6,求的值.
如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.
如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移 5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.
已知m是方程的一个根,求的值.
解方程 (1)x2﹣3x+2="0" (2) (3) (4)