(11·贵港)如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO.(1)求证:△AOB∽△BDC;(2)设大圆的半径为x,CD的长为y:①求y与x之间的函数关系式;②当BE与小圆相切时,求x的值.
如图,有一张纸片,是由边长为的正方形、斜边长为的等腰直角三角形 组成的(<),90°,且边和在同一条直线上.要通过适当的剪拼, 得到一个与之面积相等的正方形. (Ⅰ)该正方形的边长为; (Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要 说明剪拼的过程:.
如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5. (1)试求出y关于x的函数关系式,并求当y=3时相应x的值; (2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数; (3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
书籍是人类进步的阶梯!为爱护书一般都将书本用封皮包好. 问题1:现有精装词典长、宽、厚尺寸如图(1)所示(单位:cm),若按图(2)的包书方式,将封面和封底各折进去3cm.试用含a、b、c的代数式分别表示词典封皮(包书纸)的长是cm,宽是cm; 问题2:在如图(4)的矩形包书纸皮示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度. (1)若有一数学课本长为26cm、宽为18.5cm、厚为1cm,小海宝用一张面积为1260cm2的矩形纸包好了这本数学书,封皮展开后如图(4)所示.若设正方形的边长(即折叠的宽度)为x cm,则包书纸长为cm,宽为cm(用含x的代数式表示). (2)请帮小海宝列好方程,求出第(1)题中小正方形的边长x cm.
已知正方形A BCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G。 (1)求证:△BDG∽△DEG。 (2)若EG•BG=4,求BE的长。
如图,点A(m,6),B(n,1)在反比例函数图像上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5. (1)求m、n的值并写出反比例函数的表达式; (2)连接AB,在线段DC上是否存在一点E,使得△ABE的面积等于5,若存在,求出E点坐标;若不存在,请说明理由。