解不等式:
(本题满分12分,每小题6分)(1) 在如图所示的平面直角坐标系中,先画出△OAB 关于y轴对称的图形,再画出△OAB绕点O旋转180°后得到的图形. (2)先阅读后作答:我们已经知道,根据几何图形的面积 关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a +b)( a +b) =" 2a2" +3ab +b2,就可以用图22-1的面积关系来说明.① 根据图22-2写出一个等式 ;② 已知等式:(x +p)(x +q)="x2" + (p +q) x + pq,请你画出一个相应的几何图形加以说明.
某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人?
如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.
(本题满分10分,每小题5分)(1)计算:(2)解方程组:
(本小题满分14分)如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.(1)求∠OAB的度数.(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.